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Abstract. A model N -electron system—a finite jellium—is considered first. The virial equation
(VE) for it is obtained by adapting the result of Holas and March (Holas A and March N H 1999
Phys. Rev. A 60 2853) concerning a molecule in a homogeneous magnetic fieldB. Next, by applying
a limiting procedure with N tending to infinity, the VE for an infinite-jellium system is established.
This result extends the well-known zero-field VE by adding a term involving a derivative over
B. Similarly, the VE for a periodic solid is obtained by applying a limiting procedure to the VE
for a cluster (‘finite crystal’). All VEs are valid for the systems in arbitrary (ground or excited)
eigenstates.

1. Introduction

The area of atoms, molecules, and condensed phases in intense magnetic fields is of
considerable current interest. For atoms and molecules, astrophysical interest is high, because
chemistry can be altered, for instance, in the very high magnetic fields found at the surface
of neutron stars (Lieb et al 1992, Freeman and March 1996). In condensed phases, n-type
InSb in an intense magnetic field was studied theoretically in early work (Durkan et al 1968).
This motivated experiments by Andrei et al (1988) in the area relating to the theory of a two-
dimensional electron liquid in a transverse magnetic field (Laughlin 1983, Isihara 1989); see
also March (1996).

This motivation, plus the very recent theoretical investigation of Steinberg and Ortner
(1998, 1999) on the correlation energy of an electron gas (in the so-called jellium model) at
high density in an intense magnetic field has led us back to the virial theorem for such a system,
and to seek the generalization of the (zero-magnetic-field) result of March (1958); see also
Argyres (1967):

−rs dεjel(rs)

drs
= 2εkin(rs) + εpot(rs) (1.1)

where εkin, εpot, and εjel are, respectively, the kinetic, potential, and total ground-state (GS)
energy per electron of the jellium model,

εjel = εkin + εpot (1.2)
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and rs is the usual parameter related to the electron density n as

n(rs) = ( 4
3πr

3
s )
−1. (1.3)

Atomic units are used throughout, with the bohr a0, the hartree h̄2/(ma2
0), and h̄/(ea2

0) =
2.3505× 105 T as the units of length, energy, and magnetic field, respectively.

For the jellium placed in a homogeneous magnetic field B we expect equation (1.1) to be
extended by a term involving the derivative over B, similar to one involving rs :

−rs ∂εjel(rs, B)

∂rs
+ αB

∂εjel(rs, B)

∂B
= 2εkin(rs, B) + εpot(rs, B). (1.4)

In order to check this conjecture on some example and to determine the value of the parameter
α, let us consider a uniform high-density electron gas in an extremely high-field regime,
where the potential energy can be neglected compared with the kinetic energy εMTF, which is
connected, for the motion in the plane ⊥ B, with occupying the orbitals of the lowest Landau
level, and with free motion along B. Thus, in this regime,

εpot(rs, B)→ 0 (1.5a)

εkin(rs, B)→ εMTF(rs, B) = c′MTFr
−6
s B−2. (1.5b)

We shall term εMTF(rs, B) the magnetic Thomas–Fermi (MTF) kinetic energy, to underline its
origin as having the same phase-space basis (Kadomtsev 1970), but now in the high-field limit,
as the original zero-field statistical model. Its form can be found, e.g., in Lieb et al (1992) and
Steinberg and Ortner (1998, 1999).

After simple algebra we find that equation (1.4) is satisfied by equation (1.5) together with
(1.2) when α = 2. In section 3 it will be proven that the conjectured virial equation (1.4) with
α = 2 is true for arbitrary rs and arbitrary B.

2. Results for the finite-jellium system

We define the finite jellium as a system of N mutually interacting electrons, moving in a
homogeneous magnetic field B, and interacting with the ‘background’: the positive charge
of the value N smeared uniformly over a finite volume �. This system resembles a molecule
in which discrete nuclei are replaced by a continuous background. Therefore we propose to
use the Holas and March (1999) (HM) results on the virial equation (VE) for a molecule in
a magnetic field. But we must first determine how their final result must be modified by the
above-mentioned replacement.

In the notation of HM, their equations (3.9), (3.10),

Emol = T + EC (2.1a)

represents the total eigenenergy of a molecule (here—the finite jellium) in the GS or some
excited state, with T the kinetic energy term, and

EC = Eee + Een + Enn (2.1b)

the potential energy, a sum of all contributions due to Coulombic (C) interactions: electron–
electron, electron–nucleus, and nucleus–nucleus. In terms of the density distribution n+(r) of
the background charge, the last term in the case of jellium can be written as

Enn = 1

2

∫
d3r1 d3r2

n+(r1)n+(r2)

|r1 − r2| (2.2)

(the analogue of the molecular Enn, equation (3.8) of HM), while the potential needed for Een

(equation (3.6) of HM) is

ven(r) = −
∫

d3r ′
n+(r

′)
|r − r′| (2.3)
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(the analogue of equation (3.1) of HM). Let the shape of the region occupied by the background
charge be characterized by a function κ(ϑ, ϕ) > 0 such that, in the spherical coordinates,

n+(r, ϑ, ϕ) = N

�(R)
�

(
Rκ(ϑ, ϕ)− r

)
(2.4)

where �(x) is the unit step function, while R is a parameter describing the linear dimension
of the region (e.g., by choosing κ(ϑ, ϕ) = 1, a sphere of the radius R is defined). As follows
directly from equation (2.4), the volume of the background region (BR) is

�(R) =
∫

d3r �
(
Rκ(ϑ, ϕ)− r

) = R3�(1). (2.5)

It will be convenient to characterize the finite jellium by rs connected with the uniform density
of the BR

N

�(R)
= n(rs) (2.6)

and by N . So, by combining equations (1.3), (2.6), and (2.5), we find

R(rs, N) = (
N 4

3πr
3
s /�(1)

)1/3 = rsN
1/3R(1, 1). (2.7)

Therefore, with n+(r, ϑ, ϕ; rs, N) given by equation (2.4) together with (2.6) and (2.7), the
dependence on {rs, N} in equations (2.2) and (2.3) is revealed to be

Enn(rs, N) = r−1
s N5/3Enn(1, 1) (2.8)

ven(r; rs, N) = r−1
s N2/3ven

(
r/

(
rsR(1, N)

); 1, 1
)
. (2.9)

We are now ready to investigate scaling properties of these quantities: the identity obtained
from equation (2.9)

ven(λr; rs, N) = λ−1(λr−1
s )N2/3ven

(
r/

(
(λ−1rs)R(1, N)

); 1, 1
)
= λ−1ven(r; λ−1rs, N)

(2.10)

leads to
∂

∂λ
ven(λr; rs, N)

∣∣∣∣
λ=1

= −
(

1 + rs
∂

∂rs

)
ven(r; rs, N) (2.11)

while the direct differentiation of equation (2.8) gives

−rs ∂

∂rs
Enn(rs, N) = Enn(rs, N). (2.12)

Equations (2.11) and (2.12) are analogues of equations (3.4) and (3.11) of HM: we see that the
former ones can be obtained from the last ones by applying the replacement

R · ∂

∂R
−→ rs

∂

∂rs
. (2.13)

With this replacement, the VE (4.8b) of HM reads (see also equation (2.1a) here)(
−rs ∂

∂rs
+ 2B

∂

∂B

)
Emol(rs, N,B) = 2T (rs, N,B) + EC(rs, N,B). (2.14)

This is an exact result for the VE of the finite jellium. It should be noted that the VE obtained
by HM was shown to be valid for an arbitrary (ground or excited) eigenstate of a molecule.
Therefore, the same is true also in the case of the finite-jellium result (2.14). To simplify
notation, we have suppressed the dependence of all energy terms on the label (a set of quantum
numbers) of the eigenstate, on the shape function κ of the BR, and on the orientation B/B of
the magnetic field with respect to this region.

On putting B = 0, equation (2.14) reduces to the GS result of Argyres (1967) (his ‘free
boundary conditions’ case), and generalizes his result to an arbitrary eigenstate.
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3. Results for the infinite-jellium system

Let us consider now a sequence (numbered by N ) of the finite-jellium systems, which all
have the same density (the same rs) of the BR together with its shape function κ and its
orientation with respect to B/B, and all are in the eigenstate with the same label. It should be
noted that the volume � occupied by the uniform background of each N -electron system is
proportional toN : �(rs, N) ∝ R3(rs, N) ∝ Nr3

s , while the volume ∂� of the ‘skin’ (a layer of
thickness of a few rs above and below the surface of the BR) shows weaker dependence on N :
∂�(rs, N) ∝ rsR

2(rs, N) ∝ N2/3r3
s . Consider the local (at the space point r) characteristics

of the electron system—the one-particle density matrix γ1(r + r′, σ1; r + r′′, σ2) and the pair
density n2(r + u/2, r − u/2)—the information sufficient to evaluate the total energy; see
HM. Because in the space far outside the surface these characteristics are exponentially small,
while within the skin they may differ essentially from the bulk characteristics, the relative
contribution of these two regions to the total energy diminishes with increasing N . Therefore
we conclude that the limit of the total eigenenergy per electron

εjel(rs, B) = lim
N→∞

Emol(rs, N,B)

N
(3.1)

and, similarly, the limit εkin(rs, B) obtained from T (rs, N,B) and the limit εpot(rs, B) from
EC(rs, N,B)—all exist and are independent of the particular shape function κ and field
direction. Moreover, we conclude that there exist the limits of both sides of equation (2.14)
divided beforehand by N :(

−rs ∂

∂rs
+ 2B

∂

∂B

)
εjel(rs, B) = 2εkin(rs, B) + εpot(rs, B). (3.2)

This VE is our main result concerning the (infinite-) jellium model (called also the zero-
temperature electron plasma). When combined with equation (1.2) (which is the large-N limit
of equation (2.1a) divided byN ; see also equation (3.1)), equation (3.2) allows for separation of
the kinetic and potential energy contributions in terms of the total energy (compare equation (2)
of March (1958) and equations (2), (3) of Argyres (1967), both in the zero-field case):

εkin(rs, B) =
(
−rs ∂

∂rs
+ 2B

∂

∂B
− 1

)
εjel(rs, B) (3.3a)

εpot(rs, B) =
(

+rs
∂

∂rs
− 2B

∂

∂B
+ 2

)
εjel(rs, B). (3.3b)

From the fact that the VE (3.2) is valid for an arbitrary eigenstate of the jellium system
it follows, in particular, that this VE can be applied to each of the possible phases (in the
{rs, B} plane) of the GS of the jellium. As found by MacDonald and Bryant (1987) (see also
references therein), the transition on the phase diagram from the uniform-density state to the
Wigner-crystal state occurs in several steps.

4. High-density jellium in a strong magnetic field

The results obtained in the previous section for a jellium of arbitrary density n in an arbitrary
magnetic fieldB in some eigenstate will be applied now to the GS of this system at high density
and in a strong magnetic field—the case investigated recently by Steinberg and Ortner (1998,
1999) (SO). General features of the electronic motion in this regime were already summarized
in section 1 (below equation (1.4)). It is convenient to describe this uniform system like SO in
terms of two variables: the expansion parameter rB ∝ k−1

F ∝ (l2Bn)
−1, and the filling parameter

t = εF /(h̄ωc), where lB =
(
h̄/(eB)

)1/2
is the magnetic length, ωc = eB/m is the cyclotron
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frequency, and kF , εF are the Fermi momentum and energy, connected with one-dimensional
free motion. The direct and reciprocal variable transformations

rB(rs, B) = π−23−12r3
s B t (rs, B) = π2322−3r−6

s B−3 (4.1a)

rs(rB, t) = (3π4)1/3rBt
1/3 B(rB, t) = (2π2)−1r−2

B t−1 (4.1b)

induce the function transformations ε ←→ ε̃, so

ε̃(rB, t) = ε
(
rs(rB, t), B(rB, t)

)
(4.2a)

ε(rs, B) = ε̃
(
rB(rs, B), t (rs, B)

)
. (4.2b)

Let us find now the transformed VE (3.2). By applying the chain rule of differentiation we
obtain

∂ε(rs, B)

∂ ln(rs)
=

(
∂ ln(rB)

∂ ln(rs)

∂

∂ ln(rB)
+

∂ ln(t)

∂ ln(rs)

∂

∂ ln(t)

)̃
ε(rB, t)

=
(

+3
∂

∂ ln(rB)
− 6

∂

∂ ln(t)

)̃
ε(rB, t) (4.3a)

∂ε(rs, B)

∂ ln(B)
=

(
+1

∂

∂ ln(rB)
− 3

∂

∂ ln(t)

)̃
ε(rB, t). (4.3b)

We see that the combination of the above results(
− ∂

∂ ln(rs)
+ 2

∂

∂ ln(B)

)
ε(rs, B) =

(
− ∂

∂ ln(rB)
+ 0

∂

∂ ln(t)

)̃
ε(rB, t) (4.4)

allows for rewriting the VE (3.2) in a simpler form:

−rB ∂

∂rB
ε̃jel(rB, t) = 2̃εkin(rB, t) + ε̃pot(rB, t). (4.5)

Consequently, equation (3.3) transforms into

ε̃kin(rB, t) =
(
−rB ∂

∂rB
− 1

)̃
εjel(rB, t) (4.6a)

ε̃pot(rB, t) =
(

+rB
∂

∂rB
+ 2

)̃
εjel(rB, t). (4.6b)

The results (4.5) and (4.6) are valid for arbitrary (but nonzero) rs, B. Moreover, they remain
true also for more general transformations: rB = c1r

1+2α
s Bα , t = c2r

2β
s Bβ , where α, β, c1, c2

are arbitrary real constants satisfying β �= 0, c1 �= 0, c2 �= 0.
The results of SO for the expanded εjel are valid for a small enough expansion parameter,

say rB � η � 1 (where η is a chosen small number), and for a limited filling, t � 1. These
inequalities, rewritten in terms of rs, B, are: rs � 6.636η, and 2.231r−2

s � B � 14.80ηr−3
s .

Within this validity range, SO obtained the GS energy of the jellium in a field as a series in rB
(analogous to the well-known zero-field series in rs), a sum of terms called the MTF kinetic,
exchange, and correlation energy:

ε̃jel(rB, t) = ε̃MTF(rB, t) + ε̃x(rB, t) + ε̃c(rB, t) (4.7a)

ε̃MTF(rB, t) = cMTFr
−2
B cMTF = (6π2)−1 (4.7b)

ε̃x(rB, t) = cx(t)r
−1
B (4.7c)

ε̃c(rB, t) = ccl(t) ln(rB) + cc0(t) + cch(rB, t). (4.7d)

A form of the (higher-order) term cch(rB, t) is unknown, but it vanishes when rB → 0. All
t-dependent coefficients can be found in SO. With the help of equation (4.6), we obtain from
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the SO series (4.7) the correlated kinetic and potential energies as

ε̃kin(rB, t) = ε̃MTF(rB, t)−
(
rB

∂

∂rB
+ 1

)̃
εc(rB, t) (4.8a)

ε̃pot(rB, t) = ε̃x(rB, t) +

(
rB

∂

∂rB
+ 2

)̃
εc(rB, t). (4.8b)

5. Results for a periodic solid

Periodicity of a crystal (solid) will be described by elementary translations {aj = rUCa0
j : j =

1, 2, 3}, where the dimensionless vectors a0
j satisfy, by definition, (a0

1 × a0
2) · a0

3 = 1. The
crystal unit cell (UC), of the volume �UC = r3

UC, is a parallelepiped spanned on aj . It contains
MUC nuclei of charges Zµ at positions ρµ =

∑
j ρµjaj , µ = 1, . . . ,MUC. To maintain

neutrality, there must be NUC =
∑

µ Zµ electrons per UC.
We define now a cluster (‘finite crystal’) as a system of N = N1N2N3NUC interacting

electrons moving in a homogeneous magnetic field B and interacting with the nuclear
framework contained in N1N2N3 UCs. The array of nuclear positions is

R = {{{Rl1l2l3µ: µ = 1, . . . ,MUC}: lj = 1, . . . , Nj }: j = 1, 2, 3}
where Rl1l2l3µ = rUC

∑
j (lj + ρµj )a

0
j , while the array of nuclear charges is

Z = {{Zµ: µ = 1, . . . ,MUC}: l = 1, . . . , (N1N2N3)}.
All nuclear positions are fixed and, possibly, unrelaxed. The nucleus–nucleus interaction
energy is included. We see that this cluster is identical with a molecule considered by HM,
with the parameter rUC playing the role of their size parameter R. Therefore the VE (4.13b)
of HM holds. In the present notation it reads(

−rUC
∂

∂rUC
+ 2B

∂

∂B

)
EN

mol(rUC, B) = 2T N(rUC, B) + EN
C(rUC, B) (5.1)

where EN
mol represents the total energy of a molecule (here—the cluster characterized by

N = (N1, N2, N3)) in some eigenstate; see equation (2.1) for its decomposition.
Consider next a sequence (labelled with N) of clusters which all have the same

rUC,a
0
j ,MUC, ρµj , Zµ,B, and their state label. By arguments given is section 3 we conclude

that the limit of the total eigenenergy per UC

εUC(rUC, B) = lim
{Nj→∞:j=1,2,3}

EN
mol(rUC, B)

N1N2N3
(5.2)

exists, and, similarly, limits of its components and the VE (5.1)—all divided by N1N2N3—
exist: (

−rUC
∂

∂rUC
+ 2B

∂

∂B

)
εUC(rUC, B) = 2εkin(rUC, B) + εpot(rUC, B). (5.3)

This VE is our main result for a periodic solid in an arbitrary (ground or excited) state. The
relations analogous to equation (3.3) hold too. By recalling that the pressure p in a system
of the energy εUC and the volume �UC is given by p = −∂εUC/∂�UC, and remembering that
�UC = r3

UC, we can replace the term −rUC ∂εUC(rUC, B)/∂rUC by 3�UC(rUC)p(rUC, B).
A summary is given in the abstract.
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